Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 1515-1521 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A method of radiation grafting of methyl methacrylate (MMA) monomer on natural rubber (NR) latex has been studied. The irradiation dose in radiation emulsion polymerization of MMA monomer was lower compared to the irradiation dose for grafting of MMA monomer on NR latex, in order to obtain the same degree of conversion. This is due to the size of the rubber particles which are quite large and, hence, not sufficient to ensure an ideal emulsion polymerization. The irradiation dose for radiation grafting of MMA monomer on latex was around 300 krad to obtain a 75% degree of conversion. However, this irradiation dose was lower compared to the irradation dose for bulk polymerization of MMA monomer, in order to obtain the same degree of conversion. This is due to the gel effect in the viscous media. Radiation grafting of MMA monomer on NR latex does not influence the pH of the latex, but influences the viscosity significantly. The viscosity of the NR latex increased with an increase in irradiation dose, due to the increase of the total solid content in the latex. The MMA monomer converted to P-MMA in NR latex was largely grafted on the NR, or at least insoluble in a solvent for P-MMA, such as acetone or toluene. The hardness of the pure gum vulcanizate with an increase in the degree of grafting or P-MMA content, but the other physical properties, such as tensile strength, modulus, elongation at break, and thermal stability, were not greatly influenced by the degree of grafting.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...