Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 1837-1851 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The rheological behavior and fiber spinning are investigated for the Celanese liquid crystal copolyester 30 mol% p-hydroxybenzoic acid and 70 mol% 2-hydroxy-6-naphthoic acid (designated as 30HBA/70HNA) with inherent viscosity 7.8 dL/g. Shear thinning viscosity, and yield stress are observed at low shear stress, which probably results from the existence of crystallites in the melt.The crystal-nematic melting point of the copolymer, as measured by differential scanning calorimetry, is around 309°C. Extrudates are collected at four different temperatures ranging from 315 to 345°C. Melt fracture and die swell are observed above 335°C at low shear stress. A wide-angle x-ray diffraction (WAXS) study of an annealed sample indicates that the abnormal phenomenon may be due to crystallites arising from blocky units of HNA. Fiber spinning is performed at high shear rate at 325 and 335°C. Flow is stable under these conditions. The spin draw ratio is the ratio of take-up velocity to the velocity of extrudate existing from the capillary. The initial modulus reaches a maximum at a fairly low spin draw ratio. Instron and wide-angle x-ray (WAXS) studies show that the mechanical properties and orientation are poor for the fiber spun near the crystal-nematic melting point. Also, thermal history is found to affect the rheological behavior. Heat treatment offibers, particularly those which are well oriented, brings an improvement of mechanical properties.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...