Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear differential equations and applications 3 (1996), S. 269-286 
    ISSN: 1420-9004
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We construct blow-up patterns for the quasilinear heat equation (QHE) $$u_t = \nabla \cdot (k(u)\nabla u) + Q(u)$$ in Ω×(0,T), Ω being a bounded open convex set in ℝ N with smooth boundary, with zero Dirichet boundary condition and nonnegative initial data. The nonlinear coefficients of the equation are assumed to be smooth and positive functions and moreoverk(u) andQ(u)/u p with a fixedp〉1 are of slow variation asu→∞, so that (QHE) can be treated as a quasilinear perturbation of the well-known semilinear heat equation (SHE) $$u_t = \nabla u) + u^p .$$ We prove that the blow-up patterns for the (QHE) and the (SHE) coincide in a structural sense under the extra assumption $$\smallint ^\infty k(f(e^s ))ds = \infty ,$$ wheref(v) is a monotone solution of the ODEf′(v)=Q(f(v))/v p defined for allv≫1. If the integral is finite then the (QHE) is shown to admit an infinite number of different blow-up patterns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...