Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of electronic testing 3 (1992), S. 219-234 
    ISSN: 1573-0727
    Keywords: Diagnosis ; fault models ; Markov chains ; random testing ; sequential machines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract A mathematical framework for the testing and diagnosis of sequential machines is developed. A very general fault model is used in which a faulty machine is represented as a sequential machine, possibly with state and output sets different from those of the good machine. A deterministic finite automaton, called observer, describes the process by which one gains information from the observation of the responses to test sequences. It generalizes the work of Hennie on distinguishing and homing sequences, by modelling all the possible conclusions that could be drawn from observing the circuit under test. A nondeterministic acceptor is derived from the observer; it accepts diagnosing sequences and can also be used to generate test sequences. We then associate probabilities with this nondeterministic acceptor which, together with a stochastic source of input symbols, provides a probabilistic diagnoser. As a particular application we consider the testing and diagnosis of random-access memories by random test sequences. Our model generalizes the work by David et al. on the calculation of the length of a random test sequence required to guarantee that the probability of detection of a fault exceeds a prescribed threshold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...