Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 3 (1992), S. 79-83 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Glass-ceramic A-W containing crystalline apatite and wollastonite in an MgO-CaO-SiO2 glassy matrix bonds to living bone through an apatite layer which is formed on its surface in the body. The parent glass G of glass-ceramic A-W and glass-ceramic A, which has the same composition as glass-ceramic A-W but contains only the apatite, also bond to living bone through the surface apatite layer, whereas glass-ceramic A-W(Al), which contains the apatite and wollastonite in an MgO-CaO-SiO2-Al2O3 glassy matrix, neither forms the surface apatite layer nor bonds to living bone. In the present study, in order to reveal the mechanism of formation of the surface apatite layer, changes in ion concentrations of a simulated body fluid with immersion of these four kinds of glass and glass-ceramics were investigated. Bioactive glass G and glass-ceramics A and A-W all showed appreciable increases in Ca and Si concentrations, accompanied by an appreciable decrease in P concentration, whereas non-bioactive glass-ceramic A-W(Al) hardly showed any element concentration change. It was speculated from these results that dissolution of the Ca(II) and Si(IV) ions from bioactive glass and glass-ceramics plays an important role in forming the apatite layer on their surfaces in the body.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...