Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 36 (1980), S. 13-34 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The extension of the Graetz problem to include axial conduction has been of interest in view of its application to a number of low Peclet number heat or mass transfer situations. Past efforts in dealing with this problem have been plagued with uncertainties arising from expansion in terms of “eigenfunctions” and “eigenvalues” belonging to a nonselfadjoint operator. The uncertainties spring from a lack of basis for the assumptions that no complex eigenvalues exist and that the calculated eigenvectors originate from a complete set. Other methods have been entirely numerical. The present work produces an entirelyanalytical solution to the Graetz problem for the Dirichlet boundary condition based on a selfadjoint formalism resulting from a decomposition of the convective diffusion equation into a pair of first order partial differential equations. Physically, the decomposition views the convective diffusion process as a pair of stipulations on how the temperature (or concentration) and theaxial energy (or mass) flow through a partial tube cross-section vary with radial and axial distances. The solution obtained is simple, and readily computed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...