Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 22 (1996), S. 111-117 
    ISSN: 1573-0778
    Keywords: aggregation ; bioreactor ; cell growth ; diploid fibroblasts ; microcarriers ; suspension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Polystyrene microcarriers were prepared in four size ranges (53–63 μm, 90–125 μm, 150–180 μm and 300–355 μm) and examined for ability to support attachment and growth of human diploid fibroblasts. Cells attached rapidly to the microcarriers and there was a direct relationship between cell attachment and microcarrier aggregation. Phasecontrast and scanning electron microscopic studies revealed that while aggregation was extensive, most of the aggregate consisted of void volume. Cell growth studies demonstrated that human diploid fibroblasts proliferated well in microcarrier aggregates, reaching densities of 2.5–3×106 cells per 2 ml dish after 6 days from an inoculum of 0.5×106 cells per dish. When cells were added to the microcarriers at higher density (up to 5×106 cells per 2-ml culture), there was little net growth but the cells remained viable over a 7-day period. In contrast, cells died when plated under the same conditions in monolayer culture. When the microcarriers were used in suspension culture, rapid cell attachment and rapid microcarrier aggregation also occurred. In 100-ml suspension culture, a cell density of 0.7×106 cells per ml was reached after 7 days from an inoculum of 0.1×106 cells. Based on these data, we conclude that microcarrier aggregation is not detrimental to fibroblast growth. These data also indicate that small microcarriers (53–63 μm) (previously thought to be too small to support the growth of diploid fibroblasts) can support fibroblast growth and this occurs primarily because microcarriers in this size range efficiently form aggregates with the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...