Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 3607-3614 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The microstructure of fibre–foil Ti–6Al–4V (composition in weight per cent) and IMI 834 matrix metal matrix composites (MMCs), and corresponding foil-bonded alloys, are investigated in relation to fabrication parameters. Higher fabrication temperatures are required in IMI 834 MMCs, which results in a thicker interfacial reaction layer than in Ti–6Al–4V MMCs. The matrix microstructure in all materials is predominantly α with intergranular β, as a result of the slow cooling rate. MMCs reinforced with SM1240 fibres exhibit boron precipitates along foil bond lines, owing to diffusion during consolidation. Fabrication using fibre mats with 7.1 fibres per millimeter (FPM) results in an excellent microstructure in (Ti–6Al–4V)–SM1240. The larger diameter of the SM1140+fibre compared with SM1240 means that (Ti–6Al–4V)–SM1140+requires FPM significantly below 7.1 in order to produce acceptable microstructural quality. The higher residual stresses in IMI 834 MMCs result in cracking of the matrix and fibre–matrix interfacial region when a FPM of 7.1 is used. Acceptable microstructural quality is observed in IMI 834 MMCs when the FPM of fibre mats is reduced to 6.3. Interfibre cracking in IMI 834–SM1140+is enhanced by a higher matrix microhardness than the other materials. This high hardness may be caused by a high matrix carbon content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...