Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Toughening mechanisms in blends of isotactic polypropylene and Noryl polyphenylene oxide/polystyrene (iPP/Noryl) are studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. Large Noryl particles (10–15 μm) are formed in iPP/Noryl blend and crazing is found to be the dominant toughening mechanism. A detailed investigation of fracture mechanisms reveals that Noryl particles help trigger and stabilize massive crazes in the iPP matrix. Incorporation of a small amount of styrene-ethylene-propylene (SEP) compatibilizer helps reduce Noryl particle size and improve interfacial adhesion between iPP and Noryl particles. Crazing and shear banding mechanisms are found to operate sequentially in iPP/Noryl/SEP blends. As a result, significantly improved toughness is obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...