Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-879X
    Keywords: electrocatalysis ; carbon monoxide ; platinum-tin alloy ; single crystal ; electrooxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The kinetics of the electrochemical oxidation of carbon monoxide (CO) and CO/hydrogen mixtures (0.1 and 2% CO) in sulfuric acid electrolyte at 25–62°C was studied on different surfaces of the ordered single crystal Pt3Sn alloy. Characterization of the surface composition and structure was determined in UHV using low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and low energy ion scattering (LEIS) prior to determining the electrode kinetics using the classical rotating disk method (RDE) with CO dissolved in the electrolyte. Clean annealed and sputtered-cleaned but not-annealed surfaces of (110) and (111) orientation were studied. A remarkable difference in activity was observed between the annealed (111) surface and the sputtered but not-annealed (110) surface, with both surfaces having the same nominal surface composition, 20–25 at% Sn, but different local structures. The onset potential for CO oxidation on the (111) surface was shifted cathodically by 0.13 V relative to that for the sputtered (110) surface, and the onset comes remarkably close to 0 V on the reversible hydrogen potential scale. Relative to pure Pt surfaces (of any crystal structure), the potential shift is more than 0.5 V, corresponding to a catalytic activity that is higher by more than four orders of magnitude. Comparable shifts were observed for the oxidation of CO/H2 mixtures. Both the structure sensitivity and the high catalytic activity of the Pt3Sn surface are attributed to an adsorbed state of CO unique to this alloy and occurs at relatively high coverage on the (111) surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...