Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 27 (1998), S. 803-815 
    ISSN: 1572-8927
    Keywords: Rare earth ; complexation ; carbonate ; ICP–MS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Carbonate stability constants for yttrium and all rare earth elements have been determined at 25°C and 0.70 molal ionic strength by solvent exchange and inductively coupled plasma–mass spectrometry (ICP–MS). Measured stability constants for the formation of $${\text{MCO}}_3^ +$$ and $${\text{M}}\left( {{\text{CO}}_{\text{3}} } \right)_2^--$$ from M3+ are in good agreement with previous direct measurements, which involved the use of radio-chemical techniques and trivalent ions of Y, Ce, Eu, Gd, Tb, and Yb. Direct ICP–MS measurements of $${\text{MCO}}_3^ +$$ and $${\text{M}}\left( {{\text{CO}}_{\text{3}} } \right)_2^--$$ formation constants are also in general agreement with modeled stability constants for the metals La, Pr, Nd, Sm, Dy, Ho, Er, Tm, and Lu, based on linear-free energy relationship (LFER). The experimental procedures developed in this work can be used for assessing the complexation behavior of other geochemically important ligands such as phosphate, sulfate, and fluoride.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...