Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-817X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract A mechanism for self-organization of GalnP strained quantum wires in (GaP) m /(lnP) m short-period binary superlattice (SPBS) is discussed. To elucidate the self-organization mechanism, GalnP/AllnP compressively strained multi-quantum-wire (CS-MQWR) lasers were fabricated, changing the superlattice monolayer numberm in (GaP) m /(lnP) m SPBS active layers. The self-organization occurred form〉1.2, determined from transmission electron microscopy images and from the anisotropic TM/TE polarization ratio in electroluminescence, i.e. an anisotropic dipole moment. The mechanism by which quantum wire axes were selected to the $$[01\bar 1]$$ direction is discussed in terms of the anisotropy in adatom diffusion between [011] and $$[01\bar 1]$$ directions. To confirm this, (GaP)1.2/(lnP)1.2 SPBS layers were grown on GaAs (100) substrates misoriented towards the [011] direction, on which the [011] adatom diffusion is suppressed. Enhanced quantum wires self-organization by substrate misorientation was observed, showing that anisotropic diffusion played an important role. The mechanism modelling of the lateral compositional modulation is discussed considering the initial growth of films largely mismatched to bottom crystals. The lateral compositional modulation is supposed to be related to GaP wire-like nuclei induced by large strain energy in the first GaP layer growth in (GaP) m /(lnP) m SPBSs. GalnP/AllnP CS-MQWR lasers with lowJ th values of 257 A cm−2 were obtained atm=1.5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...