Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 26 (1986), S. 417-430 
    ISSN: 1573-4889
    Keywords: cyclic carburization-oxidation ; carbides ; austenite ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Several austenitic heat-resistant steels were exposed to alternating periods of carburization at 1273 K [a c= 1,po2〈10−28 atm] and oxidation at 973°K [a c≈ O,po2 = 0.2 atm]. In all cases the depth of internal carbide precipitation increased with cumulative carburization time. It was found that the carburization rates of high nickel content alloys were unaffected by intermittent oxidation cycles, whereas the low nickel, high iron content alloys experienced a reduction in carburization rate subsequent to oxidation treatment. The latter group of alloys formed external scales of chromium-rich M7C3 which were shown by sulfur tracing experiments to be gas permeable. It was concluded, therefore, that oxidation of these materials led to blockage of cracks and holes in the scales, thereby decreasing the surface carbon activity and hence the carburization rate. High nickel, low iron alloys formed external scales of chromium-rich M7C3 covered by Cr3C2. These scales were shown to have very low gas permeabilities. It was concluded that the carbon activity at the surface of these alloys was controlled by scale-alloy equilibration, and was therefore not affected by brief periods of oxidation. The pattern of carbide scale formation is qualitatively consistent with the thermodynamics of the Fe-Cr-C system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...