Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: ATP ; pH ; Voltage dependence ; Volume regulation ; Intracellular Ca2+ ; Patch clamp ; Fura-2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the luminal membrane of rat cortical collecting duct (CCD) a big Ca2+-dependent and a small Ca2+-independent K+ channel have been described. Whereas the latter most likely is responsible for the K+ secretion in this nephron segment, the function of the large-conductance K+ channel is unknown. The regulation of this channel and its possible physiological role were examined with the conventional cell-free and the cell-attached nystatin patch-clamp techniques. Patch-clamp recordings were obtained from the luminal membrane of isolated perfused CCD segments and from freshly isolated CCD cells. Intracellular calcium was measured using the calcium-sensitive dye fura-2. The large-conductance K+ channel was strongly voltage- and calcium-dependent. At 3 μmol/l cytosolic Ca2+ activity it was half-maximally activated. At 1 mmol/l it was neither regulated by cytosolic pH nor by ATP. At 1 μmol/l Ca2+ activity the open probability (P o) of this channel was pH-dependent. At pH 7.0 P o was decreased to 4±2% (n=9) and at pH 8.5 it was increased to 425±52% (n=9) of the control. At this low Ca2+ activity the P o of the channel was reduced by 1 mmol/l ATP to 8±4% (n=6). Cell swelling activated the large-conductance K+ channel (n=14) and hyperpolarized the membrane potential of the cells by 9±1 mV (n=23). Intracellular Ca2+ activity increased after hypotonic stress. This increase depended on the extracellular Ca2+ activity. A possible physiological function of the large-conductance K+ channel in rat CCD cells may be the reduction of the intracellular K+ concentration after cell swelling. Once this channel is activated by increases in the cytosolic Ca2+ activity it can be regulated by changes in cellular pH and ATP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...