Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Ca2+ oscillation ; Caffeine ; Histamine ; Ryanodine ; Ca2+-induced Ca2+ release ; Ca2+-activated K+ current ; Cerebral artery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the present experiment, we characterized the intracellular Ca2+ oscillations induced by caffeine (1 mM) or histamine (1–3 μM) in voltage-clamped single smooth muscle cells of rabbit cerebral (basilar) artery. Superfusion of caffeine or histamine induced periodic oscillations of large whole-cell K+ current with fairly uniform amplitudes and intervals. The oscillatory K+ current was abolished by inclusion of ethylenebis(oxonitrilo)tetraacetate (EGTA, 5 mM) in the pipette solution. Caffeine- and histamine-induced periodic activation of the large-conductance Ca2+-activated K+ [K(Ca)] channel was recorded in the cell-attached patch mode. These results suggest that the oscillations of K+ current are carried by the K(Ca) channel and reflect the oscillations of intracellular Ca2+ concentration ([Ca2+]i). Ryanodine (1–10 μM) abolished both caffeine- and histamine-induced oscillations. Caffeine- induced oscillations were abolished by the sarcoplasmic reticulum Ca2+-adenosine 5′-triphosphatase (Ca2+-ATPase) inhibitor, cyclopiazonic acid (10 μM), and a high concentration of caffeine (10 mM). Inclusion of heparin (3 mg/ml) in the pipette solution blocked histamine-induced oscillations, but did not block caffeine-induced oscillations. By the removal of extracellular Ca2+, but not by the addition of verapamil and Cd2+, the caffeine-induced oscillations were abolished. Increasing Ca2+ influx rate increased the frequencies of caffeine-induced oscillations. Spontaneous oscillations were also observed in cells that were not superfused with agonists, and had similar characteristics to the caffeine-induced oscillations. From the above results, it is concluded, that in smooth muscle cells of the rabbit cerebral (basilar) artery, ryanodine-sensitive Ca2+-induced Ca2+ release pools play key roles in the generation of caffeine- and histamine-induced intracellular Ca2+ oscillations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...