Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Mossy fibers ; Perforant path ; (+)3-PPP ; Ditolylguanidine ; CNQX ; In vitro rat brain slice ; Neurotransmitter release ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Focal electrical stimulation of selected excitatory pathways in the hippocampal slice caused a decrease in the binding of [3H]-1,3-di(2-tolyl)guanidine (DTG) or [3H]-(+)-3-[hydroxyphenyl]-N-(1-propyl)piperidine ((3H)-(+)3-PPP) to haloperidol-sensitive sigma binding sites in the slice. Activation of the mossy fibers or perforant path by high frequency electrical stimulation caused the reduction in [3H]-DTG binding; whereas activation of fibers in the strata radiatum, lacunosummoleculare, alveus, or oriens did not affect [3H]-DTG binding. The decrease in binding observed was calcium-dependent and tetrodotoxin sensitive and varied with the frequency, intensity, and duration of stimulation. Although haloperidol-sensitive [3H]-DTG binding sites are distributed throughout the hippocampus, stimulation of the perforant path or mossy fibers resulted in a significant reduction in binding only in the dentate region of the slice. The decrease in binding following perforant path stimulation was blocked by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX); whereas the decrease in binding caused by mossy fiber stimulation was not affected by CNQX or DL-APV. The results obtained support the hypothesis that activation of the granule cells in the hippocampal slice caused the release of an endogenous ligand which acts at the haloperidol-sensitive sigma binding site in the dentate gyrus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...