Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 49 (1998), S. 258-266 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Purified recombinant poly(hydroxyalkanoic acid) (PHA) synthase from Chromatium vinosum (PhaECCv) was used to examine in vitro the specific synthase activity, turnover of R-(−)-3-hydroxybutyryl coenzyme A (3HB-CoA) and poly(3-hydroxybutyric acid) formation under various conditions. The 3HB-CoA consumption was terminated by a reaction-dependent inactivation of the PHA synthase. Salts (MgCl2, CaCl2, NaCl), proteins (bovine serum albumin, lysozyme, phasine) or detergent (Tween 20) increased the 3HB-CoA turnover to 2.5-fold. Specific PHA synthase activity was only partially affected by the added components. In general, a higher concentration of salt often inhibited the activity of PhaECCv without affecting the yield according to 3HB-CoA turnover. NAD+ and NADP+ (2 mM) inhibited PhaECCv completely, where-as NADH and NADPH did not. Macroscopic poly(3HB) granules were formed in vitro if PhaECCv was incubated in the presence of sufficient amounts of 3HB-CoA and if MgCl2 was present. The form and size of the granules synthesized in vitro were affected by the concentration of the PHA synthase protein as well as by bovine serum albumin and the GA24 protein, a poly(3HB)-granule-associated protein of Alcaligenes eutrophus. Scanning electron micrographs from the synthesized granules were obtained. The granules consisted of poly(3HB) that had a molar mass in the range (1–2) × 106 g/mol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...