Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Polymer bulletin 42 (1999), S. 237-244 
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary 5-Nitro-2-(2′-vinyloxyethoxy)benzylidenemalononitrile (2a), methyl 5-nitro-2-(2′-vinyloxyethoxy)benzylidenecyanoacetate (2b), 3-nitro-4-(2′-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 3-nitro-4-(2′-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 5-nitro-2-(2′-vinyloxyethoxy)benzaldehyde (1) and 3-nitro-4-(2′-vinyloxyethoxy)benzaldehyde (3) with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 2a-b and 4a-b were polymerized with boron trifluoride etherate as a cationic initiator to yield poly(vinyl ethers) 5-6 having nitrooxybenzylidenemalononitrile and nitrooxycyanocinnamate, which is effective chromophore for second-order nonlinear optical applications. Polymers 5-6 were soluble in common organic solvents such as acetone and DMSO. T g values of the resulting polymer were in the range of 70–81°C. Electrooptic coefficient (r33) of the poled polymer films were in the range of 19–27 pm/V, which was improved by introducing of nitro group. Polymers 5–6 showed a thermal stability up to 300°C in TGA thermograms, which is acceptable for NLO device applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...