Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 152-158 
    ISSN: 1432-0789
    Keywords: Key words14C pulse-labelling ; Pasture fertility ; Microbial biomass ; Carbon fluxes ; Carbon budgets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Information on carbon (C) flows and transformations in the rhizosphere is vital for understanding soil organic matter dynamics and modelling its turnover. We followed the translocation of photosynthetically fixed C in three hill pastures that varied in their phosphorus (P) fertility, using a 14C-CO2 pulse-labelling chamber technique. Pasture shoot, root and soil samples were taken after 4h, 7 days and 35 days chase periods to examine the fluxes of 14C in the pasture plant-root-soil system. Shoot growth over 35 days amounted to 114, 179 and 182gm–2 at the low (LF), medium (MF) and high (HF) fertility pasture sites, respectively. The standing root biomass extracted from the soil did not differ significantly between sampling periods at any one level of fertility, but was significantly different across the three levels of fertility (1367, 1763 and 2406gm–2 at the LF, MF and HF pastures, respectively). The above- and below-ground partitioning of 14C was found to vary with the length of the chase period and fertility. Although most 14C (74%, 65% and 57% in the LF, MF and HF pastures, respectively) was in the shoot biomass after 4h, significant translocation to roots (23–39%) was also detected. By day 35, about 10% more 14C was partitioned below-ground in the LF pasture compared with the HF pasture. This is consistent with the hypothesis that, at limiting fertility, pasture plants allocate proportionally more resource below-ground for the acquisition of nutrients. In the LF site, with an annual assimilated C of 7064kgha–1, 2600kg was respired, 1861kg remained above-ground in the shoot and 2451kg was translocated to roots. In the HF pasture, of the 17313kgha–1 C assimilated, 7168kg was respired, 5298 remained in the shoot and 4432kg was translocated to the roots. This study provides, for the first time, data on the fluxes and quantities of C partitioned in a grazed pasture. Such data are critical for modelling C turnover and for constructing C budgets for grazed pasture ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...