Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Zoomorphology 111 (1992), S. 167-178 
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ventral surface ofHolothuria forskali (Holothuroida, Aspidochirotida) is almost completely covered by small-sized podia that are locomotory. Each podium consists of a stem that allows the podium to lengthen, to flex, and to retract, and this is topped by a disc that allows the podium to adhere to the substratum during locomotion. Podia ofH. forskali do not end in a sucker and their adhesion to the substratum thus relies entirely on the disc epidermal secretions. The disc epidermis is made of five cell types: non-ciliated secretory cells of two different types that contain granules whose content is either mucopolysaccharidic (NCS1 cells) or mucopolysaccharidic and proteinic in nature (NCS2 cells), ciliated secretory cells containing small granules of unknown nature (CS cells), cilitated nonsecretory cells (CNS cells), and support cells. The cilia ofCS cells are subcuticular whereas those ofCNS cells, although also short and rigid, traverse the cuticle and protrude in the outer medium. During locomotion, epidermal cells of the podial disc are presumably involved in an adhesive/de-adhesive process functioning as a duogland adhesive system. Adhesive secretions would be produced byNCS1 andNCS2 cells and de-adhesive secretion byCS cells. All these secretions would be controlled by stimulations of the two types of ciliated cells (receptor cells) which presumably interact with the secretory cells by way of the nerve plexus. The lack of suckers and the coexistence of two adhesive cell types in the disc epidermis give the locomotory podia ofH. forskali a “compromise” structure which would perhaps explain their ability to move as efficiently along soft and hard substrata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...