Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 132 (1972), S. 473-496 
    ISSN: 1432-0878
    Keywords: Renal proximal tubule ; Surface structure of plasma membrane ; Actin-like filaments ; Microvilli ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of the plasma membrane and the core of microvilli of proximal tubule cells has been investigated by electron microscopy using sectioned and negatively stained material. By the technique of negative staining, a particulated coat is disclosed on the outside of the plasma membrane of microvilli of brush borders isolated from rat, rabbit and ox. This coat is composed of 30 to 60 Å particles and is 150 to 300 Å thick and appears to be a distinguishing feature for the luminal plasma membrane (brush border) of proximal tubule cells. The plasma membrane of the basal part of tubule cells is found to be smooth. By thin sectioning, an axial bundle of 50 to 70 Å diameter filaments regularly arranged in an “1+6 configuration”, one axially located filament being surrounded by a ring of six, is disclosed. The distance from the ring of filaments to the inner surface of the plasma membrane is 250–300 Å, the diameter of the ring 300 Å and the center-to-center distance between filaments 120 Å. Negative staining also discloses 60 Å filaments in microvilli of isolated brush borders. Broken off, single microvilli (fingerstalls) are observed with thin filaments projecting from their broken ends. Filaments up to 1 μ in length are seen. At high magnification, the filaments appear beaded and show strong resemblance with actin filaments isolated from skeletal muscle. Based on present evidence, it is postulated that microvilli constituting renal brush borders possess contractile properties, which may play a role in the absorption process operating at the luminal part of the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...