Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Pheromones ; Olfactory system ; Nervus terminalis ; Horseradish peroxidase ; Tracer studies ; Clarias gariepinus (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The olfactory tract of the African catfish, Clarias gariepinus, consists of two tracts, the medial and lateral olfactory tract. Ovulated female catfish are attracted by male steroidal pheromones. Attraction tests with catfish in which the medial and lateral olfactory tract have been selectively lesioned show that the effects of these pheromones are mediated by the medial olfactory tract. The central connections of the medial and lateral olfactory tract have been studied by retro- and anterograde transport techniques using horseradish peroxidase as a tracer. Upon entering the forebrain, the medial olfactory tract innervates the posterior pars ventralis and pars supracommissuralis of the area ventralis telencephali and the nucleus preopticus periventricularis, the nucleus preopticus and the nucleus recessus posterioris. Application of horseradish peroxidase to the olfactory epithelium shows that part of the innervation of the area ventralis telencephali and the nucleus preopticus periventricularis can be attributed to the nervus terminalis, which appears to be embedded in the medial olfactory tract. The lateral olfactory tract sends projections to the same brain areas but also innervates the nucleus habenularis and a large terminal field in the area dorsalis telencephali pars lateralis ventralis. Furthermore, the medial olfactory tract carries numerous axons from groups of perikarya localized in the area dorsalis telencephali. Contralateral connections have been observed in the olfactory bulb, telencephalon, diencephalon and mesencephalon. It is suggested that processes of the medial olfactory tract innervating the preoptic region may influence the gonadotropin-releasing hormone system and in doing so may lead to behavioral and physiological changes related to spawning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...