Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The submarine eruption of a new small knoll, which was named “Teishi knoll”, off eastern Izu Peninsula behind the Izu-Mariana arc occurred in the evening of 13 July 1989. This is the first historic eruption of the Higashi-Izu monogenetic volcano group. The eruption of 13 July followed an earthquake swarm near Ito city starting on 30 June. There were subsequent volcanic tremors on 11 and 12 July, and the formation of the Teishi knoll on the 100 m deep insular shelf 4 km northeast of Ito city. There were five submarine explosions, which were characterized by intermittent domelike bulges of water and black tephra-jets, which occurred within 10 min on 13 July. Ejecta of the eruption was small in volume and composed of highly crystalline basalt scoria, highly vesiculated “pumice”, and lithic material. Petrographical features suggest that the “pumice” was produced by vesiculation of reheated wet felsic tuff of an older formation. The Teishi knoll, before the eruption, was a circular dome, 450 m across and 25 m high, with steep sides and a flat summit. Considerations of submarine topographic change indicate the knoll was raised by sill-like intrusion of 106 m3 of magma beneath a 30 m thick sediment blanket. This shallow intrusion is assumed to have started on 11 July when volcanic tremors were observed for the first time, but there was no indications of violent interaction between wet host sediments and intruding magma. The submarine eruption of 13 July appears to have been Friggered by a major lowering of the magma-column. The basalt scoria, having crystal-contents of more than 60%, is assumed to be derived from the cooled plastic margin of the shallow intrusive body. However, glassy scoria, which would indicate the interaction between hot fluidal magma and external water, was not observed. A scenario for the 1989 submarine eruption is as follows. When rapid subsidence of the hot interior of the intrusive magma occurred, reduced pressure caused the implosion of cooled plastic magma, adjacent pressurized, hot host material, and wet sediment. The mixing of these materials triggered the vigorous vapor explosions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...