Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : International Union of Crystallography (IUCr)
    Acta crystallographica 51 (1995), S. 450-455 
    ISSN: 1600-5724
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Diffraction experiments provide information on the Fourier components of microscopic density distributions in crystals. To obtain the spatial densities themselves, an inverse Fourier problem has to be solved. The procedure is complicated by the presence of noise and incompleteness of the data. The application of the maximum-entropy (MaxEnt) principle was a breakthrough in density reconstruction, allowing high-quality density maps to-be obtained without involving any a priori information concerning what the reconstructed density should look like. In this work, a procedure is proposed that incorporates a priori (e.g. theoretical) information into MaxEnt reconstructions of spin density distributions. It allows, on the one hand, the evaluation of the existing density models and, on the other, the precise investigation of what new information the experiment brings. Unlike traditional parameter-refinement techniques, the new method does not impose any strict constraints on the density to be reconstructed and is thus much more flexible. At the same time, it suppresses artifacts and yields high-quality density maps. The advantages of the new methods are illustrated by an example of spin density reconstruction based on real polarized neutron diffraction data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...