Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 9 (1999), S. 393-402 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A shell model is introduced to study a turbulence driven by the thermal instability (Rayleigh–Bénard convection). This model equation describes cascade and chaos in the strong turbulence with high Rayleigh number. The chaos is numerically studied based on this model. The characteristics of the turbulence are analyzed and compared with those of the Gledzer–Ohkitani–Yamada (GOY) model. Quantities such as a mean value of total fluctuation energy, it's standard deviation, time averaged wave spectrum, probability distribution function, frequency spectrum, the maximum instantaneous Lyapunov exponent, distribution of instantaneous Lyapunov exponents, are evaluated. The dependences of these quantities on the error of numerical integration are also examined. There is not a clear correlation between the numerical accuracy and the accuracy of these quantities, since the interaction between a truncation error and an intrinsic nonlinearity of the system exists. A finding is that the maximum Lyapunov exponent is insensitive to a truncation error. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...