Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 92 (2002), S. 2207-2209 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Crystalline silicon microcavities resonant at 1.1 μm were fabricated by using submicron thick Si membranes from a silicon on insulator substrate. These membranes were composed of a single crystalline Si film layered above and below two thin silicon dioxide layers. The low temperature photoluminescence (PL) of the membranes originated from the electron–hole condensed phase, which is characteristic of ultrapure crystalline silicon. The microcavities are then formed by depositing dielectric mirrors on both sides of the membranes. Optical properties of microcavities are studied by optical transmission and PL spectroscopy. The Si PL spectrum is strongly modified by the cavity: at the resonance the PL linewidth is reduced by a factor 3 and the emission is highly angle dependent. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...