Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 731-737 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Numerical simulations of radiation transport in cylindrical geometry are used to determine the effect of radially symmetric inhomogeneities. The focus of this study are inhomogeneities such as may be produced by radial cataphoresis or temperature gradients in cylindrical glow discharges, i.e., a quadratic profile of absorbing atoms which has a minimum on the axis of the cylinder. A propogator function analysis of the Holstein–Biberman equation and a Monte Carlo simulation of resonance photon scattering are simultaneously used to examine three limiting cases of interest: (i) a pure Doppler broadened atomic lineshape, (ii) a pure Lorentz atomic lineshape produced by foreign gas broadening, and (iii) a pure Lorentz atomic lineshape produced by resonance collision broadening. The fundamental mode distribution of excited atoms, the fundamental mode trapped decay rate, and the volume-averaged escape rate for a homogeneous production rate per unit volume are calculated for each of these cases. The trapped decay rates are found to change modestly (depending upon lineshape) as the degree of inhomogeneity is increased, if the volume integral of the absorbing atom density remains fixed. Correction factors for the fundamental mode trapped decay rate are reported. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...