Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 3705-3709 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron-cyclotron-resonance (ECR) and reactive ion etching (RIE) rates for GaN, AlN, InN, and InGaN were measured using the same reactor and plasma parameters in Cl2/Ar or CH4/H2/Ar plasmas. The etch rates of all four materials were found to be significantly faster for ECR relative to RIE conditions in both chemistries, indicating that a high ion density is an important factor in the etch. The ion density under ECR conditions is ∼3×1011 cm−3 as measured by microwave interferometry, compared to ∼2×109 cm−3 for RIE conditions, and optical emission intensities are at least an order of magnitude higher in the ECR discharges. It appears that the nitride etch rates are largely determined by the initial bond breaking that must precede etch product formation, since the etch products are as volatile as those of conventional III–V materials such as GaAs, but the etch rates are typically a factor of about 5 lower for the nitrides. Cl2/Ar plasmas were found to etch GaN, InN, and InGaN faster than CH4/H2/Ar under ECR conditions, while AlN was etched slightly faster in CH4/H2/Ar plasmas. The surface morphology of InN was found to be the most sensitive to changes in plasma parameters and was a strong function of both rf power and etch chemistry for ECR etching. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...