Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4103-4111 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A recursive integral equation for the intramolecular correlation function of an isolated linear polymer of N bonds is derived from the integral equations presented in the preceding paper. The derivation basically involves limiting the density of the polymer to zero so that polymers do not interact with each other, and thus taking into account the intramolecular part only. The integral equation still has the form of a generalized Percus–Yevick integral equation. The intramolecular correlation function of a polymer of N bonds is recursively generated by means of it from those of polymers of 2, 3,..., (N−1) bonds. The end-to-end distance distribution functions are computed by using the integral equation for various chain lengths, temperatures, and bond lengths in the case of a repulsive soft-sphere potential. Numerical solutions of the recursive integral equation yield universal exponents for the mean square end-to-end distance in two and three dimensions with values which are close to the Flory results: 0.77 and 0.64 vs Flory's values 0.75 and 0.6 for two and three dimensions, respectively. The intramolecular correlation functions computed can be fitted with displaced Gaussian forms. The N dependence of the internal chemical potential is found to saturate after some value of N depending on the ratio of the bond length to the bead radius.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...