Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 3950-3963 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper presents a light scattering study of the dynamics of concentrated solutions of nearly monodisperse (σ≈0.16) spherical micronetwork particles consisting of highly cross-linked polystyrene dissolved in carbon disulfide, i.e., a "good'' solvent. Above volume fractions of cursive-phi=0.50 the intermediate scattering function, measured over a time window of 10−7 to 103 s using the ALV5000 correlator, decays in two steps and shows indications of nonergodic behavior for cursive-phi≥0.64. Such behavior is typical for glass forming systems and has recently been found close to the glass transition of a hard sphere colloidal system [W. van Megen and P. N. Pusey, Phys. Rev. A 43, 5429 (1991)]. Thus the introduced system can be used for modeling the glass transition of atoms on a mesoscopic scale. The traditional analysis of structural relaxation in terms of a Kohlrausch–Williams–Watts distribution yields a mean relaxation time which follows the empirical Mooney equation as a function of concentration and thus corresponds to Vogel–Fulcher–Tammann behavior. However, the necessity to add an unspecified "intermediate'' process between the short and long time KWW decays demonstrates the limitations of this "pragmatic'' approach. The mode coupling theory of the glass transition interprets the intermediate scattering function consistently over nearly seven decades in time, the intermediate region corresponding to the crossover from β to α relaxation (von Schweidler law). The critical volume fraction of 0.636 derived by this analysis corresponds to a value of 0.59 for an ideal monodisperse system which is well in accord with other experimental and computer simulation studies of the glass transition of atomic systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...