Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 8835-8841 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present here the best qualitative and quantitative illustration to date of the perturbation "gateway'' effect in collision-induced transitions between two mutually perturbing electronic states. The gateway effect, as described by Gelbart and Freed [Chem. Phys. Lett. 18, 470 (1973)], is a suggestion that all collision-induced transfer of population between two electronic states proceeds through a small number of isolated-molecule eigenstates which are of mixed electronic character, the "gateway levels,'' and that the rates for such gateway-mediated processes are related to the mixing fractions in the gateway levels. The gateway levels here are the Na2 A 1Σu+ v'=26∼b 3Π2u v'=28 J'=16e,a-symmetry levels which are significantly mixed owing to an extremely small spin–orbit perturbation matrix element (the neighboring J'=15 and 17e,s-symmetry levels are essentially free of mixing). A cw optical–optical double resonance (OODR) scheme is used to PUMP a single parent level and PROBE single daughter and granddaughter levels.The oscillator strengths for the PUMP and PROBE transitions are derived, respectively, from the A 1Σu+←X 1Σg+ (26,4) band and the 2 3Π2g←b 3Π2u (28,28) subband. The qualitative observation of the gateway effect is that whenever an a-symmetry A 1Σu+ v'=26 parent level is selected, b 3Π2u v'=28 daughter and granddaughter levels are observably populated, but when an s-symmetry A 1Σu+ v'=26 parent is selected, essentially no population is detected in b 3Π2u v'=28 daughter and granddaughter levels (i.e., no perturbation, no interelectronic state transfer). The quantitative observation of the gateway effect is that when a J'=12 (or 14)e,a parent is selected, the most efficiently populated rotational levels of the other electronic state are granddaughter levels centered about the J'=16e,a gateway daughter level rather than about the J' value of (or minimum energy gap relative to) the parent level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...