Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 7323-7338 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We apply our new algorithms presented in the companion paper (LTID: long-time-step inertial dynamics, IBD: inertial Brownian dynamics) for mass-dependent Langevin dynamics (LD) with hydrodynamics, as well as the standard Brownian dynamical (BD) propagator, to study the thermal fluctuations of supercoiled DNA minicircles. Our DNA model accounts for twisting, bending, and salt-screened electrostatic interactions. Though inertial relaxation times are on the order of picoseconds, much slower kinetic processes are affected by the Brownian (noninertial) approximation typically employed. By comparing results of LTID and IBD to those generated using the standard (BD) algorithm, we find that the equilibrium fluctuations in writhing number, Wr, and radius of gyration, Rg, are influenced by mass-dependent terms. The autocorrelation functions for these quantities differ between the BD simulations and the inertial LD simulations by as much as 10%. In contrast, when the nonequilibrium process of relaxation from a perturbed state is examined, all methods (inertial and diffusive) yield similar results with no detectable statistical differences between the mean folding pathways. Thus, while the evolution of an ensemble toward equilibrium is equally well described by the inertial and the noninertial methods, thermal fluctuations are influenced by inertia. Examination of such equilibrium fluctuations in a biologically relevant macroscopic property—namely the two-site intermolecular distance—reveals mass-dependent behavior: The rate of juxtaposition of linearly distant sites along a 1500-base pair DNA plasmid, occurring over time scales of milliseconds and longer, is increased by about 8% when results from IBD are compared to those from BD. Since inertial modes that decay on the picosecond time scale in the absence of thermal forces exert an influence on slower fluctuations in macroscopic properties, we advocate that IBD be used for generating long-time trajectories of supercoiled DNA systems. IBD is a practical alternative since it requires modest computational overhead with respect to the standard BD method. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...