Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 8913-8924 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An ab initio study of the ground potential energy surface (PES) of the O(1D)+CH4→OH+CH3 reaction has been performed using the second and fourth order Møller–Plesset methods with a large basis set. From the ab initio data a triatomic analytical ground PES with the methyl group treated as an atom of 15.0 amu has been derived. This PES has been employed to study the dynamics of the reaction by means of the quasiclassical trajectory (QCT) method. A good agreement between the experimental and QCT OH rovibrational distributions at a collision energy of 0.212 eV with the methane molecule at 298 K has been obtained. The analysis of the microscopic reaction mechanism shows that the reaction takes place almost exclusively through the insertion of the O(1D) atom into a C–H bond, due to the presence of the deep (CH3)OH minimum, and the resulting trajectories may be direct or nondirect (short-lived collision complexes mainly) with about the same probability. The OH vibrational distribution arising from the direct mechanism is inverted, while the nondirect mechanism leads to a noninverted one. There is some tendency to give broader OH rotational distributions peaking at higher N′ values, particularly for the vibrational levels v′=0–1, in the case of the nondirect trajectories. The PES derived here may be used in dynamics studies under conditions where the methyl group motions are not strongly coupled to the motions leading to reaction. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...