Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 1491-1497 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We explored and studied the use of several energy spectra for numerical applications in time-dependent calculation of bound state energies. Although all three types of the spectrum we studied, Sinc, Lorentzian, and Gaussian, approach the δ-function limit in the infinite time limit, their numerical properties at finite time limit are quite different. Our analysis, supported by numerical example, shows that by using Gaussian or Lorentzian spectrum, one can eliminate all the "noises'' (extra peaks) present in the standard Sinc spectrum based on Fourier transform of autocorrelation function. The use of these two spectra enables us to obtain unambiguously all eigenvalues as long as the corresponding eigenfunctions have overlaps, albeit small, with the initial wavepacket. These small-component eigenstates are normally buried under the spectral "noise'' in the standard Sinc spectrum. The Gaussian spectrum offers better resolution than Lorentzian spectrum and is recommended for use in time-dependent calculation of eigenenergies. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...