Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 4418-4432 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The deposition by molecular beam dosing of halogen molecules on rare-gas surfaces has been studied with molecular dynamics simulation. Specifically we have considered films formed by the sequential adsorption reactions: X2g+X2[aitch-theta]ads−Rg(111)[T]→X2(ads)−X2[aitch-theta]ads −Rg(111)[T], where aitch-theta is the film coverage defined by X2[adsorbed]/Rg[surface], T indicates the substrate temperature, X2 is the halogen adsorbate which is either chlorine or bromine, and Rg indicates the rare-gas substrate which is either argon or xenon. The structure of halogen adlayers was studied as a function of coverage for films grown on rare-gas substrates at different temperatures. Chlorine and bromine films on argon exhibit orientational ordering and islanding with increasing coverage. The tendency of the halogen diatoms to align along the surface normal with increasing coverage is strongly enhanced by higher temperatures in the case of chlorine on xenon, moderately enhanced in the case of chlorine on argon, and unchanged in the case of bromine on argon. Chlorine and bromine films form three-dimensional aggregated structures on argon at 15 and 25 K. Chlorine forms a two-dimensional amorphous layer on xenon at 15 K and a highly ordered layer at 50 K. The dynamics of the molecular adsorption event were studied at three different coverages: aitch-theta=0.05, 0.25, and 0.5. At all these coverages, we observed finite possibility of diffusional motion of adsorbate on the surface immediately after it lands: This was not seen at zero coverage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...