Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 9140-9146 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this article we extend our previous thermodynamic analysis of films confined to slit pores with smooth walls (i.e., plane–parallel solid surfaces without molecular structure) to the situation in which the walls themselves possess structure. Structured-wall models are frequently employed to interpret experiments performed with the surface forces apparatus (SFA), in which thin films (1–10 molecular diameters thick) are subjected to shear stress by moving the walls laterally over one another at constant temperature, chemical potential, and normal stress or load. The periodic structure of the walls is reflected in a periodic variation of the shear stress with the lateral alignment (i.e., shear strain) of the walls. We demonstrate by means of a solvable two-dimensional model that the molecular length scale imposed by the structure of the walls precludes the derivation of a simple mechanical expression for the grand potential analogous to that which holds in the smooth-wall case. This conclusion is borne out by the results of a grand-canonical Monte Carlo simulation of the three-dimensional prototypal model consisting of a Lennard-Jones (12,6) fluid confined between fcc (100) walls. Criteria for the thermodynamic stability of thin films confined by structured walls are derived and applied to the SFA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...