Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1279-1286 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A high brightness krypton fluoride Raman laser (wavelength 0.268 μm) generating 0.3 TW, 12 ps pulses with 20 μrad beam divergence and a prepulse of less than 10−10 has been focused to produce a 10 μm wide line focus (irradiances ∼0.8–4×1015 W cm−2) on plastic targets with a diagnostic sodium fluoride (NaF) layer buried within the target. Axial and lateral transport of energy has been measured by analysis of x-ray images of the line focus and from x-ray spectra emitted by the layer of NaF with varying overlay thicknesses. It is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for previous spot focus experiments. The measured axial energy transport is compared to medusa [J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, Comput. Phys. Commun. 7, 271 (1974)] one-dimensional hydrodynamic code simulations with an average atom post-processor for predicting spectral line intensities. An energy absorption of ∼10% in the code gives agreement with the experimental axial penetration. Various measured line ratios of hydrogen- and helium-like Na and F are investigated as temperature diagnostics in the NaF layer using the ration [R. W. Lee, B. L. Whitten, and R. E. Strout, J. Quant. Spectrosc. Radiat. Transfer 32, 91 (1984)] code.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...