Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 3211-3238 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The role of dissipation in the theory and simulations of homogeneous plasma slices is analyzed with the goal of understanding the "entropy paradox,'' which is that a certain positive-definite functional of the perturbed distribution function increases without bound in some situations even though the potentials appear to have achieved a steady state. Confusion arises from an interchange of the limits t→∞ and η→0, where η is a measure of dissipation. It is argued that it is never strictly correct to neglect η; the averaged dissipation approaches a nonzero limit (proportional to the averaged flux) even as η→0. An exactly soluble model is worked out to illustrate the point. In collisionless particle simulations, the particle and heat fluxes may nevertheless saturate with their correct values. The relations of kinetic and fluid entropy balances are discussed with the aid of (1) the Terry–Horton model for collisionless drift waves, and (2) a simple model of the ion-temperature-gradient-driven mode. The rationale for simulations of homogeneous slices of plasma is given, with particular emphasis being placed on the relationship of dissipation in such slices to dissipation in a complete physical domain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...