Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 508 (Mar. 2006), p. 419-424 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We have investigated the columnar to equiaxed transition experimentally in directionally solidified hypoeutectic binary AlSi alloys with and without grain refinement particles and for different processing parameters in the framework of the ESA-MAP CETSOL (Columnar-to-equiaxed transition in solidification processing). A power-down technique was used in a Bridgman-Stockbarger type gradient-furnace to simultaneously increase the solidification rate and decrease the temperature gradient in the cylindrical sample during directional solidification vertically upwards. The position of the CET was determined from the cut and polished samples and correlated to the applied cooling rate for different experiments. Critical parameters for the temperature gradient and the solidification rate at the transition were determined from cooling curves measured within the sample and from a time-of-flight analysis of ultrasonic pulses propagated in the solid part of the sample and being reflected at the solid-liquid interface. The critical values found are compared to the deterministic models of Hunt and of Martorano et al. The objective of this contribution is the presentation of preliminary results for the different alloys and processing parameters of ground-based experiments. These results will be used for the testing of different models describing the CET within the framework of the ESA-MAP CETSOL and for the preparation of comparative microgravity experiments
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...