Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 108-109 (Dec. 2005), p. 761-766 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: Light-emitting diodes (LEDs) based on single crystal SiGe with the Ge content of 5.2% were fabricated using a planar technology. Their electroluminescence (EL) parameters were studied over a wide range of measured currents (up to 11 A) and temperatures (80 - 300) K. The integrated EL intensity at a fixed current increased approximately two times with temperature increasing from 80 to 200 K and changed insignificantly in the temperature range of 200 – 300 K. The analysis of the EL spectra shows that the recombination involving excitons is the dominant mechanism of radiative recombination at both no-phonon and phonon-assisted transitions in SiGe LEDs not only at low temperature but at room temperature, too. The linear dependence of the integrated EL intensity on the current and the exponential decay of the integrated EL intensity confirm this conclusion. The room temperature internal quantum efficiency of EL in the region of band-to-band transitions is estimated to be 0.5%. A sublinear current dependence of the integrated EL intensity and a fast decay of the integrated EL intensity after the diode turn-off were observed at room temperature and currents 〉 2.5 A. The effect is associated with the appearance of an additional (Auger) mechanism of non-radiative recombination parallel to Shockley-Read-Hall recombination
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...