Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 2 (1990), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the developing vertebrate nervous system, cell death is known to play an important role in determining final neuron number. Retinal ganglion cells in the cat's visual system undergo a massive elimination by cell death during the prenatal period between E44 (age of embryo in days) and birth (=E65). We have examined whether neural activity contributes to ganglion cell death by infusing tetrodotoxin (TTX), a blocker of the voltage-sensitive sodium channel. TTX was infused intracranially via osmotic minipumps implanted in utero at E42. The effects of the TTX treatment on ganglion cell death and optic nerve ultrastructure were examined at either E49 or E57 by electron microscopy and quantitative analysis of optic axon number. The numbers of optic nerve axons counted in the optic nerves of animals after either 1 or 2 weeks of TTX treatment were not significantly different from the counts in normal animals at comparable ages: E49 TTX—3.2 × 105; E48 normal—3.3 × 105; E57 TTX—2.1 × 105; E59 normal—2.4 × 105. These results suggest that retinal ganglion cells cannot be rescued from death by blockade of neural activity central to the optic chiasma. However, the ultrastructure of optic nerves following 2 weeks of TTX infusion was quite abnormal. The usual packaging of axons into fascicles by glia was disrupted by the presence of many pale, organelle-poor processes that were about 10 times larger in their cross-sectional areas than axons in either normal or TTX-treated nerves. Examination of these processes in serial transverse or in longitudinal electron microscope (EM) sections of the nerve revealed that they were most likely glial in origin. The ultrastructural organization of the optic nerve following 1 week of TTX treatment was normal, indicating that this effect on glial ultrastructure is either cumulative or delayed in onset. These results suggest that while the conduction of action potentials to the terminals of retinogeniculate axons may not play a significant role in regulating ganglion cell number prenatally, it may affect the normal maturation of optic nerve glia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...