Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have 〉20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...