Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The feasibility of using a permeabilized preparation of human SH-SY-5Y neuroblastoma cells for studies of muscarinic acetylcholine receptor (mAChR) sequestration has been evaluated. Exposure of cells permeabilized with digitonin, streptolysin-O, or the α-toxin from Staphylococcus aureus to oxotremorine-M (Oxo-M) for 30 min resulted in a 25–30% reduction in the number of cell surface mAChRs, as monitored by the loss of N[3H]methyl- scopolamine ([3H]NMS) binding sites. The corresponding value for intact cells was 40%. For cells permeabilized with 20 μM digitonin, the Oxo-M-mediated reduction in [3H]NMS binding was time (t1/2∼ 5 min) and concentration (EC50∼ 10 μM) dependent and was agonist specific (Oxo M 〉 bethanechol = arecoline = pilocarpine). In contrast, no reduction in total mAChR number, as monitored by the binding of [3H]quinuclidinyl benzilate, occurred following Oxo-M treatment. The loss of [3H]NMS sites observed in the presence of Oxo-M was unaffected by omission of either ATP or Ca2+, both of which are required for stimulated phosphoinositide hydrolysis, but could be inhibited by the inclusion of guanosine 5′-O-(2-thiodiphosphate). mAChRs sequestered in response to Oxo-M addition were unmasked when the cells were permeabilized in the presence of higher concentrations of digitonin (80 μM). The results indicate (a) that permeabilized SH-SY-5Y cells support an agonist-induced sequestration of mAChRs, the magnitude of which is ∼ 65–70% of that observed for intact cells, (b) that when internalized, mAChRs are located in a cellular compartment to which [3H]NMS has only a limited access despite the removal of the plasma membrane barrier, and (c) that the production of phosphoinositide-derived second messengers is not a prerequisite for mAChR sequestration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...