Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 46 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: It was suggested in a recent report by Phillips et al. [J. Neurochem.43, 479–486 (1984)] that the low-affinity binding of [3H]imipramme in the mouse cerebral cortex could in fact represent binding of [3H]imipramine to the GF/B glass fiber filters used to terminate the assays. The present study demonstrates that this is not the case and advances two lines of evidence: (a) For saturation analysis, mouse cerebrocortical membranes were incubated with [3H]imipramine concentrations between 0.8 nM and 3.6 μM, and parallel incubations were carried out with buffer replacing the brain membranes. The same low-affinity component, in addition to the high-affinity component, was present in the binding of [3H]imipramine to brain membranes plus GF/B filters (uncorrected data), and in that to brain membranes alone (corrected data), (b) Dissociation experiments, in which filter binding is equal for all samples and dissociation time is the only variable, clearly indicated the nonhomogeneity of [3H]imipramine binding. Our results, however, do show that binding to recently purchased GF/B filters is not a negligible phenomenon in saturation experiments. Relatively lower binding was found to GF/C, GF/F, Gelman A/E, and Reeves Angel 934 AH filters; pretreatment of GF/B filters with polyethyleneimine (PEI) reduced binding to a greater extent in the single manifold than in the cell harvester.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...