Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 11 (1993), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Fluid evolution paths in the COHN system can be calculated for metamorphic rocks if there are relevant data regarding the mineral assemblages present, and regarding the oxidation and nitrodation states throughout the entire P-T loop. The compositions of fluid inclusions observed in granulitic rocks from Rogaland (south-west Norway) are compared with theoretical fluid compositions and molar volumes. The fluid parameters are calculated using a P-T path based on mineral assemblages, which are represented by rocks within the pigeonite-in isograd and by rocks near the orthopyroxene-in isograd surrounding an intrusive anorthosite massif. The oxygen and nitrogen fugacities are assumed to be buffered by the coexisting Fe-Ti oxides and Cr-carlsbergite, respectively. Many features of the natural fluid inclusions, including (1) the occurrence of CO2-N2-rich graphite-absent fluid inclusions near peak M2 metamorphic conditions (927° C and 400 MPa), (2) the non-existence of intermediate ternary CO2-CH4-N2 compositions and (3) the low-molar-volume CO2-rich fluid inclusions (36–42 cm3 mol−1), are reproduced in the calculated fluid system. The observed CO2-CH4-rich inclusions with minor N2 (5 mol%) should also include a large proportion of H2O according to the calculations. The absence of H2O from these natural high-molar-volume CO2-CH4-rich inclusions and the occurrence of natural CH4-N2-rich inclusions are both assumed to result from preferential leakage of H2O. This has been previously experimentally demonstrated for H2O-CO2-rich fluid inclusions, and has also been theoretically predicted. Fluid-deficient conditions may explain the relatively high molar volumes, but cannot be used to explain the occurrence of CH4-N2-rich inclusions and the absence of H2O.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...