Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neurochemistry 81 (2002), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dual-probe microdialysis was used to study interstitial diffusion in the rat brain. A radiolabelled tracer, [3H]mannitol, was continuously infused at different concentrations via a probe acutely implanted into the striatum of an anaesthetized male rat or into a dilute agar gel. Samples were collected by a second probe placed 1 mm away from the first, and the recovered [3H]mannitol was measured by liquid scintillation counting. In the striatum, the delivery of [3H]mannitol was counteracted by its removal from the extracellular space by passive uptake into cells and clearance into the microcirculation, causing the diffusion profile to approach quasi steady-state levels within 2 h. Diffusion data from brain and agar were analysed using a mathematical model. The apparent (effective) diffusion coefficient for [3H]mannitol was D* = 2.9 × 10−6 cm2/s, the effective volume fraction α* = 0.30 and the clearance rate constant κ = 2.3 × 10−5/s. A tortuosity, λ = 1.81, and penetration distance Γ = 4.2 mm, were calculated. We conclude that, using dual-probe microdialysis, parameters reflecting geometric and dynamic tissue properties may be obtained using appropriate mathematical analysis. Quantitative dual-probe microdialysis will be valuable in characterizing interstitial diffusion and the clearance processes underpinning volume transmission in the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...