Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Neuronal nitric oxide synthase (NOS) is considered to be involved in the pathogenesis of ischemic brain damage. In the present study, the effect of a novel neuroprotective phenylpyrimidine derivative, 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), on depolarization-stimulated NOS activity was examined in cultured neurons of mouse cerebral cortex. Various depolarizing stimuli such as veratridine, KCl, and N-methyl-d-aspartate increased the NOS activity determined by cyclic GMP formation. NS-7 concentration-dependently inhibited both the veratridine- and KCl-induced NOS activation with IC50 values of 9.3 and 9.6 µM, respectively. The reversal of KCl-evoked NOS activity by NS-7 was also observed under blockade of both ionotropic glutamate receptors and the Na+ channel with MK-801, 6-cyano-7-nitroquinoxaline-2,3-dione, and tetrodotoxin. In contrast, NS-7, even at 100 µM, did not affect N-methyl-d-aspartate-stimulated NOS activity, nor did it have any influence on NOS activity determined in the soluble fraction of rat hippocampus. Because NS-7 has already been shown to block both Na+ and Ca2+ channels, the present findings suggest that this compound inhibits depolarization-induced NOS activation by reducing Ca2+ influx through blockade of Na+ and Ca2+ channels in primary neuronal culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...