Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-26
    Description: In the introduction an approach to solving differential equations is motivated in which non-linear DEs are not attacked directly but properties like infinitesimal symmetries or the existence of an equivalent variational principle are investigated. In the course of such investigations overdetermined PDE-systems are generated which are to be solved (where the term `overdetermined' just stands for `more conditions than free functions'). In section 2.\ algorithms for simplifying and solving overdetermined PDE systems are given together with examples. References for more details of the corresponding program {\tt CRACK}, written by A.\ Brand and the author, are given. In sections 3.-05.\ applications of the program {\tt CRACK} are discussed. The first application is the investigation of symmetries of space-time metrics by solving Killing equations for Killing vectors and Killing tensors and their integrability conditions. A program {\tt CLASSYM} that formulates these equations, written by G.\ Grebot, is briefly described. In section 4.\ an example of the original application of {\tt CRACK} is discussed which is the determination of symmetries of a PDE system. The problem is to find the symmetries of an unusual unified field theory of gravitational and hadronic interactions. The application of symmetries with a program {\tt APPLYSYM} is the content of section 5.\ where an ODE, resulting from an attempt to generalize Weyl's class of solutions of Einsteins field equations, is solved. The final section is devoted to future work on, first, making a general PDE-solver more flexible and effective, and secondly, on applying it to more advanced applications. This section contains so far unpublished work. An example requiring the extension of {\tt CRACK} to deal with non-polynomial non-linearities results from an investigation of interior solutions of Einstein's field equations for a spherically symmetric perfect fluid in shear-free motion by H.\ Stephani. A possible future application of {\tt CRACK} is the determination of Killing tensors of higher rank. In the last sub-section an algorithm for formulating corresponding integrability conditions has been sketched. The maximal number of Killing tensors of rank $r$ in a $n$-dimensional Riemannian space has been found to be $\frac{1}{r+1}\left( ^{n + r - 1}_{\;\;\;\;\,r} \right) \left( ^{ n+r}_{\;\;\,r} \right)$.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...