Bibliothek

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-2013
    Schlagwort(e): Ca2+ transport ; Mg2+ transport ; Electron microprobe analysis ; Cortical thick ascending limb ; Furosemide ; Parathyroid hormone ; Paracellular shunt pathway permeability ; Tight junctions
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Recent studies from our laboratory have shown that in the cortical thick ascending limb of Henle's loop of the mouse (cTAL) Ca2+ and Mg2+ are reabsorbed passively, via the paracellular shunt pathway. In the present study, cellular mechanisms responsible for the hormone-stimulated Ca2+ and Mg2+ transport were investigated. Transepithelial voltages (PDte) and transepithelial ion net fluxes (J Na, J Cl, J K, J Ca, J Mg) were measured in isolated perfused mouse cTAL segments. Whether parathyroid hormone (PTH) is able to stimulate Ca2+ and Mg2+ reabsorption when active NaCl reabsorption, and thus PDte, is abolished by luminal furosemide was first tested. With symmetrical lumen and bath Ringer's solutions, no Ca2+ and Mg2+ net transport was detectable, either in the absence or in the presence of PTH. In the presence of luminal furosemide and a chemically imposed lumen-to-bath directed NaCl gradient, which generates a lumen-negative PDte, PTH slightly but significantly increased Ca2+ and Mg2+ net secretion. In the presence of luminal furosemide and a chemically imposed bath-to-lumen-directed NaCl gradient, which generates a lumen-positive PDte, PTH slightly but significantly increased Ca2+ and Mg2+ net reabsorption. In view of the observed small effect of PTH on passive Ca2+ and Mg2+ movement, a possible interference of furosemide with the hormonal response was considered. To investigate this possibility, Ca2+ and Mg2+ transport was first stimulated with PTH in tubules under control conditions. Then active NaCl reabsorption was abolished by furosemide and the effect of PTH on J Ca and J Mg measured. In the absence of PDte and under symmetrical conditions, no Ca2+ and Mg2+ transport was detectable, either in the presence or absence of PTH. In the presence of a bath-to-lumen-directed NaCl gradient, Ca2+ and Mg2+ reabsorption was significantly higher in the presence than in the absence of PTH. Finally, when active NaCl transport was not inhibited by furosemide, but reduced by a bath-to-lumen-directed NaCl gradient, PTH strongly increased J Ca and J Mg, whereas only a small increase in PDte was noted. In conclusion, these data suggest that PTH exerts a dual action on Ca2+ and Mg2+ transport in the mouse cTAL by increasing the transepithelial driving force for Ca2+ and Mg2+ reabsorption through hormone-mediated PDte alterations and by modifying the passive permeability for Ca2+ and Mg2+ of the epithelium, very probably at the level of the paracellular shunt pathway.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...