Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 908-922 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Erosion in bubbling fluidized-bed combustors is a serious issue that may affect their reliability and economics. Available evidence suggests that the key to understanding this erosion is detailed knowledge of the coupled and complex phenomena of solids circulation and bubble motion. A thin transparent “two-dimensional” rectangular fluidized bed with an obstacle served as a rough model for a fluidized-bed combustor. This model was studied experimentally and computationally using two hydrodynamic equation sets. The computed hydrodynamic results agree reasonably well with experimental data. Bubble frequencies and sizes compare well with those obtained from analyzing a high-speed motion picture frame-by-frame. Time-averaged porosities computed from both models agree with time-averaged porosity distributions measured with a gamma-ray densitometer. The principal diferences between the data and the computations in this paper are due to asymmetries present in the experiment and to the simplified solids rheology used in the hydrodynamic models.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...